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EXECUTIVE SUMMARY 

Bridges are critical transportation infrastructure assets because they provide passage over physical 
obstacles to substantially reduce travel time and travel cost. Similar to other types of transportation 
infrastructure, bridges deteriorate over time. Therefore, bridges should be consistently monitored 
and routinely inspected to ensure their serviceability, capacity, and safety under current traffic. In 
the United States, routine and in-depth bridge inspections are conducted by transportation 
infrastructure management agencies at all levels (e.g., federal, state, local, and tribal) to detect the 
signs of deterioration, identify the causes, and make decisions on the distribution of limited 
resources for maintenance, repair, rehabilitation, and construction projects. 

The primary components of a bridge can be categorized into three classes, including bridge deck, 
superstructure (e.g., girders), and substructure (e.g., piers and abutments). Bridge decks should be 
evaluated and assessed on a more frequently schedule to address potential problems in a timely 
manner because degraded decks could severely reduce the serviceability of bridges, cause the 
deterioration of superstructures and substructures, and lead to structural failure. Bridge deck 
inspection ensures the serviceability and safety of everything above, on, and in bridge decks. 
Traditional bridge deck inspection is conducted on the ground by having inspectors either visually 
inspect surface conditions or interpret the acoustic feedback from hammer sounding or chain 
dragging method to determine subsurface conditions. These traditional methods are expensive, 
time-consuming, labor-intensive, unsafe, and requiring specialized staff on a regular basis. They 
can also exhibit a high degree of variability. 

To overcome these challenges, researchers from the Earth Data Analysis Center (EDAC) and the 
Department of Civil, Construction, and Environmental Engineering (CCEE) at the University of 
New Mexico collaborated on this research to explore the utility of small-unmanned aircraft 
systems (S-UAS) based airborne imaging techniques in bridge deck surface and subsurface 
condition evaluation. The research team tested various S-UAS and selected DJI Mavic Pro 2 as 
the most effective one for collecting hyper-spatial resolution aerial images. The research team also 
tested various thermal-infrared (TIR) cameras and selected the most effective one for collecting 
TIR images. The research team also compared and selected Agisoft Metashape as the software 
application to conduct Structure-from-Motion (SfM) for the production of co-registered hyper-
spatial resolution orthophoto and digital surface model (DSM). In addition, the research team used 
object based image analysis (OBIA) techniques, image enhancement techniques, image difference 
techniques, image fusion techniques, and principal component analysis (PCA) techniques to 
analyze the derived orthophotos and TIR images to detect and extract bridge deck surface (i.e., 
cracks) and subsurface (i.e., delamination) distress. 

This research also developed a robust and powerful toolset that be used in standard geographic 
information systems (GIS) for operational implementation. This toolset can be used to detect, 
extract, and map bridge deck surface and subsurface distresses with an adequate degree of accuracy 
while maximizing the ability to assist inspectors with varying expertise. Research results revealed 
that the toolset is able to effectively detect and evaluate bridge deck surface and subsurface 
distresses at a high accuracy. This research also developed a guidebook on using the developed 
tools for professional education and training. The ultimate goal of this research is to train a new 
generation of transportation engineers that can effectively use the developed S-UAS based data 
collection and analysis system to accurately and rapidly detect, extract, and map bridge deck 
surface and surface distresses at a low cost. 
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1. INTRODUCTION 

Bridges provide passage over physical obstacles to substantially reduce travel time and travel cost. 
They are one of the infrastructure components critical for the safety of traveling public and 
sustainability of economic activity (1). Similar to other types of transportation infrastructure, 
bridges deteriorate over time due to various factors such as heavy traffic loads, aging of structures, 
and adverse weather conditions (2). The most widely adopted method for bridge management is 
using bridge management systems (BMS) that often take into account stochastics progresses based 
on bridge inspection information (3). Subsequently, transportation agencies at all levels (e.g., 
federal, state, local, and tribal) dedicate large amounts of time and funding to routinely inspect 
bridge conditions as part of their infrastructure asset management programs. The collected 
condition data are used by these agencies to make decisions on the distribution of limited resources 
for maintenance, repair, rehabilitation, and replacement projects. 

The primary purpose of bridge inspection is to ensure public safety while the secondary purpose 
is to preserve the remaining service life of a bridge through early detection and rapid response to 
address deficiencies (4). An effective bridge inspection program should be able to detect signs of 
deterioration, identify the causes, and recommend any needed maintenance or repair work to 
ensure the safety, serviceability, and structural capacity of a bridge under current traffic conditions 
(5). 

The Federal Highway Act in the U.S. established a mandatory national bridge inspection program 
in 1968, which was extended afterward to include all bridges that are managed by public entities 
(6). In the U.S., five basic types of bridge inspection are normally performed, including initial, 
routine, in-depth, damage, and special, although the two common ones are routine inspection and 
in-depth inspection (6-7). All bridge inspections need to be conducted in accordance with the 
National Bridge Inspection Standards (NBSI). An initial inspection is the first inspection that needs 
to be completed on a bridge when it is open for public use, and it is designed to establish baseline 
structural conditions and to identify and record any existing problems or potential problems in the 
structure. A routine inspection is generally performed every two years, and the purpose is to 
determine the functional conditions and serviceability of a bridge (6). Routine visual inspection is 
the most common form of bridge inspection to satisfy the requirements of NBSI (6, 8). An in-
depth inspection normally performed every five years, and it is a close-up, boots on the ground 
inspection of all components (e.g., above and below water level) of a bridge to identify any 
potential deficiencies not readily detectable using routine inspection procedures (6). A damage 
inspection is essentially an emergency inspection performed immediately following an accident or 
natural or human made disaster to determine whether structural damage has occurred. Lastly, a 
special inspection is designed to monitor known or suspected deficiencies on a regular basis (e.g., 
monthly). 

In recent years, bridges have received a great amount of attention because of catastrophic failures, 
deteriorating conditions, and even political pressure (5). According to the data obtained from the 
Bureau of Transportation Statistics, in 2017 there were more than 617,000 bridges in the U.S., and 
approximately 9.1% of them are rated as structurally deficient and 13.6% of them are rated as 
functionally obsolete because the average age of them was more than 40 years (9). Therefore, high-
risk bridges or bridges in poor condition may need to be inspected on a more frequent basis than 
the routine inspection. 
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The components of a bridge can be grouped into three classes (Figure 1), including deck (i.e., a 
deck on top of superstructure), superstructure (e.g., girders), and substructure (e.g., piers and 
abutments). Although all three components are equally critical to the performance of a bridge, this 
research focuses on bridge deck evaluation because the deterioration of bridge decks progresses 
more rapidly than any other bridge components (10). 

Figure 1. Components of a typical highway bridge (adopted from Michigan Department of Transportation). 

Bridge decks can be constructed of concrete, steel, timber, and fiber-reinforced polymer (FRP). 
The primary function of bridge decks is to provide a safe and comfortable riding surface for traffic 
and distribute wheel loads to the superstructure. In addition, bridge decks protect the superstructure 
and substructure from environmental harm and various contaminants such as salts and chemicals 
(5). Bridge decks are also vulnerable because they are subject to deterioration caused by various 
factors such as heavy traffic loads, adverse weather conditions, and chemicals (e.g., chloride). 
Therefore, to a certain extent, bridges can be considered as a sacrificial component because early 
bridge deck replacements must be done before the bridge superstructure needs to be replaced (5, 
10). 

A degraded bridge deck could severely reduce a bridge’s safety and serviceability. Additionally, a 
degraded bridge deck could cause the protection afforded to the superstructure and substructure 
diminish and could even cause the deterioration of these two components in an accelerating mode, 
ultimately leading to structural failure (5, 11). Furthermore, evaluating bridge deck conditions has 
become increasingly critical as transportation agencies endeavor to optimize the timing and 
approaches for bridge preventative maintenance, repair, rehabilitation, and replacement. 
Therefore, bridge decks need to be evaluated and assessed on a more frequent schedule to identify 
and address potential problems in a timely manner. To characterize the conditions of a bridge deck, 
surveys are conducted to assess the following four elements: wearing surface, deck joints, 
guardrails, and structural deck (12). 

It is always a major challenge to conduct bridge deck evaluation because inspectors will be 
exposed to traffic and weather conditions (5). Traditionally, bridge deck inspection is performed 
on the ground by having inspectors either visually inspect surface conditions or interpret the 
acoustic feedback from hammer sounding or chain dragging to determine subsurface conditions. 
These traditional methods have many limitations, including but not limited to, expensive, labor-
intensive, time-consuming, can exhibit a high degree of variability, requiring specialized staff on 
a regular basis, and unsafe. Recent advancements in remote sensing, especially small-unmanned 
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aircraft systems (S-UAS) based airborne imaging techniques and object based image analysis 
(OBIA) techniques, have shown promise in improving bridge deck inspection. To leverage these 
emerging technologies to transform evaluation practices, this project explored the utility of S-UAS 
based airborne imaging techniques and object based image processing techniques in developing a 
complete data acquisition and analysis system to accurately and rapidly detect and assess bridge 
deck wearing surface distresses (i.e., cracking) and subsurface distresses (e.g., delamination) at a 
low cost. 
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2. OBJECTIVES 

The main objective of this research is to develop a new approach to accurately and rapidly detect, 
extract, and map bridge deck wearing surface and subsurface distresses with S-UAS based airborne 
imaging techniques and transfer the technologies to transportation infrastructure management 
agencies at all levels (e.g., federal, state, local, and tribal) for implementation and workforce 
development. Specifically, this research project was focused on: (1) developing a S-UAS based 
bridge deck condition data acquisition and analysis system which can be used to accurately and 
rapidly detect bridge deck wearing surface distresses (i.e., cracks) and subsurface distresses (i.e., 
delamination) at a low cost; (2) developing a guidebook for the implementation of the S-UAS 
based bridge deck inspection system to assist transportation agencies with workforce development 
and professional training. 
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3. LITERATURE REVIEW 

As one crucial component of bridge inspection, bridge deck inspection ensures the safety and 
serviceability of everything above, on, and underneath a bridge deck. The elements that need to be 
evaluated include, but not limited to, wearing surface, deck joints, guardrails, and structural deck 
elements such as concrete slabs (12). 

A wearing surface is a layer placed on the bridge deck to form a maintainable riding surface and 
protect the underlying deck from intrusion of water, salt, and chemicals. Wearing surfaces are 
typically constructed of timber, bituminous materials (asphalt), or concrete. As the roadway 
surface that in direct contact with vehicle traffic, general deteriorated condition of a wearing 
surface indicates possible reduced safety, serviceability, and capacity. Therefore, wearing surfaces 
need to be frequently inspected, and if a wearing surface shows significant deterioration such as 
cracking and spalling, it must be further evaluated for repair or replacement work. 

Deck joints are designed to allow for traffic between structures while facilitating decks’ 
transversal, longitudinal, and rotational movement. If the joints are substantially deteriorated, they 
must be further evaluated for repair or replacement work. Guardrails are designed to provide 
passive protection to vehicles, pedestrians, and bicyclists to keep them inside the road in a secure 
way. Guardrails must be evaluated for conformance to a transportation agency’s policy to remain 
in place. Structural deck elements such as concrete slabs comprise the basic bridge deck plate. 
Structural deck elements are typically constructed of concrete, steel, timber, or FRP. If structural 
deck elements show substantial deterioration such as delamination, it must be further evaluated to 
estimate percentage of the total deck area that require full and partial deck slab repairs or even 
replacement. 

As aforementioned, it is always a challenging work to evaluate bridge deck conditions (13). To 
perform a bridge deck inspection, a team of inspectors, each of whom has different expertise, needs 
to visit the target bridge to identify defects and distresses on the deck and then measure their extent 
and severity. At the end, the inspectors need to prepare a report that includes ratings reflecting the 
condition of each bridge deck element (6). The report typically includes textural descriptions of 
the extent and severity of the detected defects and distresses. Additionally, photos will be taken by 
inspectors on the ground and included in the report to document the observations (6). 

Currently, many methods are available for bridge deck inspection, and in general, they can be 
categorized as destructive method and non-destructive (NDE) evaluation methods (6). Destructive 
evaluation methods involve obtaining core samples from a bridge deck to test their mechanical 
and chemical properties. Some examples of destructive evaluation methods include core control 
and chloride-ion concentration measurements (11). NDE methods are useful for evaluating 
properties and characteristics of materials and systems without causing damage (6). They are more 
commonly used for bridge deck inspection and they include, but not limit to, visual inspection, 
ground penetrating radar (GPR), impact echo (IE), ultrasonic wave (USW), chain dragging, 
infrared thermography (IR), and half-cell potential (11). 

Traditionally, bridge deck inspection is conducted on the ground by having inspectors either 
visually inspect surface conditions or interpret the acoustic feedback from hammer sounding or 
chain dragging to determine subsurface conditions. In recent years, in spite of the advancements 
of sensor-based NDE methods such as GPR and IR, they are still primarily deployed on the ground 
as visual inspection and chain dragging method, which can be considered as the “boots on the 
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ground” or ground-based methods. The major issues of the ground-based methods include, but not 
limited to, expensive, tedious, time-consuming, labor-intensive, require specialized staff on a 
regular basis, and potentially dangerous to inspectors in the hazardous traffic environments (13-
14). In addition, when performing ground-based visual inspection, the inspection process is 
subjective since the outcomes rely heavily on the experience of the inspectors and on the conditions 
under which the inspection process is completed, and thereby survey results can exhibit a high 
degree of variability, causing inconsistencies in surveyed data over space and across evaluation (6, 
15). When performing ground-based in-depth bridge deck inspection, another major challenge that 
inspectors encounter is the need to close the bridge to traffic, which can potentially cause severe 
traffic congestion and interruption (13). 

In a study to investigate the overall accuracy and reliability of visual routine and in-depth 
inspections, the Federal Highway Administration (FHWA) concluded that an in-depth visual 
inspection might not reveal deficiencies beyond those noted during a routine inspection (6, 14). 
The study also concluded that there are many factors impact the effectiveness of visual inspection, 
including, but not limited to, the tools used, overall thoroughness with which inspectors completed 
the inspection, time to complete inspection, and the number of annual inspections completed (6, 
14). Therefore, deployment of technologies in bridge inspection and data collection can enhance 
efficiency, accuracy, and reliability of the bridge inspection process (6). 

In an effort to adopt technologies for bridge deck inspection, some researchers explored the utility 
of airborne observation in evaluating bridge deck wearing surface conditions. The method is also 
known as aircraft-based evaluation, which is typically accomplished with a manned aircraft and a 
natural color digital camera. The resulting natural color aerial images, which typically have 
ground-sampling distance (GSD) or spatial resolutions ranging from 7.62 cm (3-inch) to 15.24 cm 
(6-inch), can be used to evaluate bridge deck wearing surface distresses such as cracks. However, 
the GSD of these images limit their ability to detect and assess finer-scale wearing surface 
distresses such as individual cracks at sub-inch level (16). Large-scale panchromatic aerial images 
(1:100) might be able to identify cracks on the wearing surface, but the extremely high cost 
ultimately prevent the further exploration of their applications for bridge deck wearing surface 
inspection. In addition, natural color aerial images cannot penetrate bridge deck to detect and 
assess subsurface defects such as delamination, although having information on both wearing 
surface and subsurface indicators of condition is vital in assigning a bridge deck rating (13). 

Therefore, it is necessary to explore and investigate technologies that are able to collect bridge 
deck wearing surface and subsurface condition data in an accurate, rapid, and cost-effective 
manner. Recent advancements in remote sensing technologies, including, but not limited to, S-
UAS based hyper-spatial resolution airborne imaging and IR airborne imaging, SfM, and OBIA, 
have shown promise in inspecting bridge deck wearing surface and subsurface conditions. 

S-UAS can fly lower to the ground than traditional manned aircraft, and therefore, allowing for 
collecting more detailed bridge deck condition data. In recent years, sUAS have emerged as an 
important platform for collecting of various types of hyper-spatial resolution aerial imagery to 
provide a synoptic view of the ground objects such as bridges. As an advanced photogrammetric 
method, SfM can be used to create the three-dimensional (3D) coordinates of objects by analyzing 
overlapping aerial images captured from varied perspective at approximately the spatial resolution 
of input images (17-18). In addition, OBIA can be used to segment a raster image and then group 
individual pixels into vector objects based on spatial, spectral, and contextual information (19). 

6 



 

              
             
               

             
             

               
               

        

                 
                

             
               

              
               

  

             
               

               
              

             
       

               
               

            
              

             
 

          
             

              
              

              
               
             

              
             

               
            
               

        

 

OBIA is an ideal tool for finer infrastructure defects detection and assessment based on hyper-
spatial resolution aerial images (20). When coupled with hyper-spatial resolution aerial data and 
OBIA, SfM holds the potential to permit the estimation of horizontal and vertical measurement at 
sub-inch scales, and ultimately, the detection and assessment of bridge deck wearing surface 
distresses (e.g., cracks and spalling) at a finder scale. Bridge deck subsurface delamination 
interfere the heat transfer through the concrete and influence the amount of radiant energy emitted 
from the concrete surface (21). Therefore, airborne IR imaging techniques can be used to detect 
and assess bridge deck subsurface distresses (i.e., delamination). 

These technologies can be considered as a form of NDE method for bridge deck because they can 
be used to collect condition data without direct contact with the bridge deck being sensed (22-23). 
More importantly, these technologies can collect bridge deck condition data above the ground, 
providing a synoptic view of the bridges being sensed, ultimately reducing the inspection cost. It 
should be noted that remote sensing is different from remote monitoring which typically has 
emplaced sensors such as strain gauges or accelerators that are indirect contact with the bridge 
components (5). 

Although there are many promising remote sensing technologies available for bridge deck wearing 
surface and subsurface condition assessment, to date there has been little evidence to prove that 
integrated results can be obtained from these technologies during a real field deployment (13). The 
major challenge is to integrate these technologies to develop a complete data acquisition and 
analysis system to rapidly acquire, integrate, and analyze bridge deck wearing surface and 
subsurface data to determine their conditions. 

Based on the review of literature, using S-UAS based airborne imaging techniques for bridge deck 
inspection is lacking and presents a significant gap in the research. Therefore, this research project 
is focused on integrating various S-UAS based airborne techniques and image processing 
techniques to develop a complete data acquisition and analysis system to detect bridge deck 
wearing surface and subsurface defects and distresses in an accurate, rapid, and cost-effective 
manner. 

This research leverages various technologies including geographic information systems (GIS), S-
UAS, hyper-spatial resolution natural color aerial imagery, SfM, OBIA, IR aerial imagery, and 
computer vision to develop a complete data acquisition and analysis system for bridge deck 
wearing surface and subsurface condition inspection. The proposed system uses an S-UAS as the 
flight platform, use two sensors (natural color and IR digital cameras) to collect hyper-spatial 
resolution aerial imagery, use the SfM technique to process the acquired aerial data to generate co-
registered orthophotos and digital surface models (DSM) for bridge decks, and use pixel-based 
image processing, OBIA, and computer vision techniques to develop a few standard GIS (i.e., 
ArcGIS) compatible software tools for automated detection of bridge deck wearing surface and 
subsurface distresses. This is because the volume of the data delivered by the S-UAS based 
airborne imaging techniques necessities the development of an automated analytical workflow that 
indicates to a qualified bridge engineer or bridge inspector which distresses on the bridge deck 
wearing surface and subsurface warrant further engineering review. 
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4. METHODOLOGY 

This research project was focused on developing a S-UAS based bridge deck condition data 
acquisition and analysis system which can be used to accurately and rapidly detect bridge deck 
wearing surface distresses (i.e., cracks) and subsurface distresses (i.e., delamination) at a low cost. 
Specifically, this research project’s methodology includes: (1) S-UAS testing and data acquisition; 
(2) data processing; (3) analysis tool development; and (4) accuracy validation. 

4.1. S-UAS Testing and Data Acquisition 

4.1.1. S-UAS Testing 
For S-UAS testing, the project team focused on testing and selecting the best S-UAS to develop 
an aerial data acquisition system for collecting bridge deck aerial images. It should be noted that 
an Unmanned Aerial Vehicle (UAV) is different from an UAS, although these two terms are often 
used interchangeably when referring to drones and aerial mapping. UAV indicates the actual 
aircraft platform that flies around to collected aerial data. In contrast, UAS indicates the entire 
system needed for aerial mapping, including UAV and sensors (e.g., natural color digital cameras). 
Therefore, a sensor or multiple sensors can be mounted to a UAV to create a UAS. According to 
the Federal Aviation Administration (FAA)’s Small Unmanned Aircraft Regulations (Part 107), 
an S-UAS is defined as an aircraft system that weighs more than 0.25 kg or 0.55 lbs. and less than 
25 kg or 55 lbs. (24). That being said, when testing the best S-UAS, it is necessary to make sure 
the combination of UAV and sensors are less than 25 kg. Based on previous experience and 
literature, the following S-UAS have been tested (Table 1 and Table 2). 

Table 1. A list of tested S-UAS for collecting hyper-spatial resolution natural color (NC) aerial images. 

S-UAS ID 

NC1 

Type 

Rotary 

Description 

DJI Matrice 600 Pro UAV + Sony Alpha a6000 natural color 
digital camera (24.3-megapixel, sensor size 23.5 x 15.6 mm) 

NC2 Rotary 
DJI Matrice 210 V2 UAV + Sony Alpha a6000 natural color 
digital camera (24.3-megapixel, sensor size 23.5 x 15.6 mm) 

NC3 

NC4 

NC5 

NC6 

NC7 

NC8 

NC9 

Rotary 

Rotary 

Rotary 

Rotary 

Rotary 

Rotary 

Fixed-Wing 

DJI Mavic Pro 2 UAV + onboard Hasselblad L1D-20c natural 
color digital camera (20-megapixel, sensor size 13.2 x 8.8 mm) 
DJI Phantom 4 Pro V2 UAV + onboard natural color digital 
camera (20-megapixel, sensor size 13.2 x 8.8 mm) 
DJI Mavic Air UAV + onboard 1/2.3-inch natural color digital 
camera (12-megapixle, sensor size 6.17 x 4.55 mm) 
DJI Mavic Air 2 UAV + onboard 1/2-inch natural color digital 
camera (12-megapixel, sensor size 6.4 x 4.8 mm) 
3DR Solo UAV + Canon SX260HS natural color digital camera 
(12.1-megapixel, sensor size 6.17 x 4.55 mm) 
3DR Iris+ UAV + Canon SX260HS natural color digital camera 
(12.1-megapixel, sensor size 6.17 x 4.55 mm) 
Event38 E384 UAV + Sony ILCE-QX1 natural color digital 
camera (20.1-megapixel, sensor size 23.2 x 15.4 mm) 

NC10 Fixed-Wing 
HCS XENO FX UAV + MAPIR Survey 3 natural color digital 
camera (12-megapixel, sensor size 6.25 x 4.69 mm) 
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Table 2. A list of tested S-UAS for collecting thermal-infrared aerial images. 

S-UAS ID Type Description 

TIR1 Rotary 
DJI Mavic Pro UAV + customized FLIR Boson 320 thermal-
infrared digital camera (pixel resolution 320 x 256) 

TIR2 Rotary 
DJI Mavic Pro Platinum UAV + customized FLIR Boson 320 
thermal-infrared digital camera (pixel resolution 320 x 256) 

TIR3 Rotary 
DJI Mavic 2 Enterprise Zoom UAV + customized FLIR Boson 
320 thermal-infrared digital camera (pixel resolution 320 x 256) 

TIR4 Rotary 
DJI Mavic 2 Enterprise Zoom UAV + customized FLIR Boson 
640 thermal-infrared digital camera (pixel resolution 640 x 512) 

TIR5 Rotary 
DJI Mavic 2 Enterprise Dual UAV + onboard FLIR Lepton 
thermal-infrared digital camera (pixel resolution 160 x 120) 

Based on the project team’s previous experience and literature, the criteria for determining the best 
S-UAS for collecting hyper-spatial resolution natural color aerial imagery include: (1) operational 
simplicity (e.g., time and effort to get the system ready for aerial data collection); (2) flight time; 
(3) payload; (4) aerial imagery quality; and (5) cost. Each of the criteria was scored on a scale of 
1 to 5 (1 = Very Poor, 2 = Poor, 3 = Fair, 4 = Good, and 5 = Very Good). The total score for a 
perfect option will be 25, and a passing grade needs to be 15 (60%). Table 3 lists the ratings for 
each tested S-UAS and the best option for collecting hyper-spatial resolution natural color aerial 
imagery for bridge deck wearing surface inspection is using the DJI Mavic Pro 2 UAV and the 
onboard Hasselblad L1D-20c NC digital camera. It has the highest score of 23 (Figure 2). 

Based on the project team’s previous experience and literature, the criteria for determining the best 
S-UAS for collecting thermal-infrared aerial imagery include: (1) operational simplicity (i.e., time 
and effort to get the system ready for aerial data collection); (2) flight time; (3) aerial imagery 
quality; (4) pixel resolution; and (5) cost. Each of the criteria was scored on a scale of 1 to 5 (1 = 
Very Poor, 2 = Poor, 3 = Fair, 4 = Good, and 5 = Very Good). The total score for a perfect option 
will be 25, and a passing grade needs to be 15 (60%). Table 4 lists the ratings for each tested S-
UAS and none of them received a passing grade. Therefore, the project team did not select any of 
the tested S-UAS for collecting thermal-infrared aerial images. 

Table 3. A list of scores for the tested S-UAS for collecting hyper-spatial resolution natural color (NC) aerial images. 

S-UAS ID 

NC1 

Operational 
Simplicity 
3 

Flight 
Time 
40-min (4) 

Payload 
Capacity 
6.0kg (5) 

Imagery 
Quality 
4 

Cost 

~$12,000 (2) 

Total 
Score 
18 

NC2 3 27-min (3) 1.5kg (4) 4 ~$10,000 (2) 16 
NC3 5 31-min (4) 1.1kg (4) 5 ~$1,800 (5) 23 
NC4 5 30-min (4) 1.0kg (4) 5 ~$2,500 (4) 22 
NC5 5 21-min (2) 0.3kg (2) 3 ~$1,000 (5) 17 
NC6 5 34-min (4) 0.8kg (3) 4 ~$1,000 (5) 21 
NC7 4 25-min (3) 0.7kg (3) 4 ~$1,500 (5) 19 
NC8 4 22-min (2) 0.4kg (2) 4 ~$1,000 (5) 17 
NC9 3 90-min (5) 1.0kg (4) 5 ~$8,000 (3) 20 
NC10 3 60-min (5) 1.0kg (4) 4 ~$8,000 (3) 19 
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Figure 2. DJI Mavic Pro 2 UAV and onboard Hasselblad L1D-20c natural color digital camera. 

Table 4. A list of scores for the tested S-UAS for collecting thermal-infrared aerial images. 

S-UAS ID 

TIR1 

Operational 
Simplicity 
1 

Flight 
Time 
27-min (3) 

Imagery 
Quality 
1 

Pixel 
Resolution 
320 x 256 (2) 

Cost 

~$5,000 (4) 

Total 
Score 
11 

TIR2 1 27-min (3) 1 320 x 256 (2) ~$5,000 (4) 11 
TIR3 1 31-min (4) 1 320 x 256 (2) ~$6,000 (4) 12 
TIR4 1 31-min (4) 1 640 x 512 (3) ~$8,000 (3) 12 
TIR5 2 31-min (4) 1 160 x 120 (1) ~$4,000 (4) 12 

As shown in Table 4, none of the tested S-UAS is able to collect aerial photos that have high 
enough spatial resolution to be able to detect bridge deck subsurface distresses such as 
delamination. When conducting operational evaluation, an S-UAS has to fly at an altitude that is 
safe to avoid drone collision and driver distraction. There is no official guidance on how to select 
a safe flight height, because it depends on many onsite environmental factors such as the height of 
overhead power lines, height of buildings, and height of trees, and the anticipated spatial resolution 
of the collected aerial images. In general, for aerial mapping purpose, it is suggested to fly the S-
UAS at lower as possible, as permitted by the surrounding structures and trees, to acquire hyper-
spatial resolution aerial images. According to the American Society for Testing and Materials 
(ASTM), when collecting thermal-infrared images for evaluating bridge deck delamination, the 
image quality and utility is highly dependent on the camera field of view (FOV) and lens (25). 
They suggest that the ideal option for image collection is one single image can cover one entire 
lane that typically has a width of 3 to 3.65 m (25). 

However, a previous study revealed that obtaining a horizontal field view of 3 to 3.65 m is not 
always achievable in the field (13). They discovered that order to collect effective thermal images 
for bridge deck subsurface distress evaluation, a thermal camera (FLIR SC640) with a very high 
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pixel resolution (640 x 480) should be placed at a height 1.88 m (6.2-feet) from the ground (13). 
This is because the pixel count for thermal cameras is very low, which leads to very low spatial-
resolution images that cannot be used to effectively resolve delamination distress. After testing, it 
revealed that none of the tested S-UAS and other potential S-UAS could fly at this height safely, 
because in general they have to fly at a minimum height 10 m (33-feet) from the ground to avoid 
collision with obstacles. Subsequently, the project team did not suggest use any of the currently 
available S-UAS to collect thermal-infrared aerial imagery for bridge deck subsurface distress (i.e., 
delamination) evaluation. 

Because of the impracticality, instead of using an S-UAS to collect thermal-infrared aerial imagery 
for detecting bridge deck delamination, the research team decided to use a handheld compact 
thermal-infrared camera (FLIR C5) for data collection. This camera is manufactured by FLIR 
Systems, which is a leading company in thermography. FLIR C5 is also known as the pocket 
thermal-infrared camera (Figure 3). It can fit in a bridge inspector’s pocket and it is a go-to toll for 
infrastructure inspection, facility maintenance, and other troubleshooting applications. This 
camera has a 160 x 120-pixel resolution thermal-infrared camera (6.5 to 14 µm). It also has a 5-
megapixel natural color digital camera that can be used to collect natural color images that can be 
co-registered with the thermal-infrared images. This dual camera configuration enables a multi-
spectral dynamic imaging (MSX) technology to add visible light details to thermal-infrared images 
in real time for greater clarity, feature edge sharpening, and enhance outline detail. This feature 
makes this camera very suitable for detecting bridge deck delamination because it adds context to 
thermal-infrared images and makes it easier to understand what the inspectors are observing. It 
should be noted that a thermal image without reference details might cause confusion later. 

Figure 3. FLIR C5 compact thermal-infrared camera (adopted from FLIR Systems). 
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4.1.2. Data Acquisition 
After the S-UAS and thermal camera had been selected for collecting natural color aerial photos 
and thermal images, the research team selected ten bridges that could potentially be used for data 
collection based on their location and surrounding environment (limited amount of power lines or 
trees). With regard to location, there are three aspects to consider: (1) bridges have to be at least 
five nautical miles or 9.3 km away from an airport; (2) bridges are not located on arterial roads or 
interstate highways to avoid high traffic volumes; (3) bridges are not located in densely populated 
neighborhoods or open areas that have a large number of pedestrians. Regarding surrounding 
environment, there are two aspects to consider: (1) there are no or limited amount of power lines 
around the bridges; and (2) there are no or limited number of trees around the bridges. Figure 4 
shows the airports and their five nautical miles (9.3 km) buffer. 

It should be noted that all selected bridges are located in Bernalillo County. The research team also 
considered other bridges in New Mexico such as bridges that are located in Chavez County, Lea 
County, or Eddy County. However, they were not selected for data collection due to undesired 
long-distance traveling. Figure 5 shows the location of the selected bridges that are located in 
Bernalillo County. As it reveals in Figure 5, ten bridges that could potentially be used for data 
collection were selected and they are located in the north and east of the Bernalillo County. The 
research team obtained the information about these bridges from NMDOT and summarized them 
in Table 5. 

Figure 4. A demonstration of using airport buffer to filter bridges that are potentially suitable for data collection. 
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Figure 5. The location of the selected bridges for examination. 

Table 5 presents detailed information about these examined bridges. According the FAA Part 107 
rule, remote pilots cannot fly S-UAS over moving vehicles unless they have obtained waivers from 
FAA. In addition, remote pilots cannot operate S-UAS directly over another person unless that 
person is directly involved in the operation or within a safe cover such as a stationary vehicle or 
protective structure. Therefore, the research team further examined each bridge’s annual average 
daily traffic (AADT, data collected in 2013 by NMDOT) to see if a low traffic volume can be 
observed for any of the bridges because the research team wanted to ensure no moving vehicles 
during data collection. Additionally, the research team needs collect ground control points (GCP) 
for aerial image processing (discussed in data processing section), and a low traffic volume bridge 
can ensure safety during CGP data collection on the ground. The research team also visited these 
bridges to inspect the wearing surfaces to see if any distresses can be visually observed. This is 
because it is not practical to collect data for image analysis or tool development if no distresses 
being observed. In other words, image analysis and tool development are depending on sample 
distresses and a wearing surface that does not any distresses cannot be used for distress detection 
and evaluation. A bridge will be considered as the best one for data collection if it has low traffic 
volume and at the same time has many visible distresses. Based on these criteria, the bridge with 
ID number of 358620 was selected for data collection. 
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Table 5. A list of examined bridges for data collection. 

ID 
Year 
Built 

Deck 
Width 

Length AADT Comments 

355703 1955 9.8 m 30.5 m 6,647 High traffic volume, no visible distresses 
355704 1955 9.8 m 39.3 m 6,647 High traffic volume, no visible distresses 
356651 1966 20.2 m 169.2 m 8,883 High traffic volume, no visible distresses 
358331 1980 16.5 m 7.3 m 936 Low traffic volume, no visible distresses 
358620 1967 10.2 m 23.5 m 1,051 Low traffic volume, many visible distresses 
358662 1986 30.2 m 14.0 m 633 Low traffic volume, no visible distresses 
358796 1989 17.9 m 7.9 m 1,670 Low traffic volume, no visible distresses 
359296 2003 18.3 m 10.3 m 3,666 Medium traffic volume, few visible distresses 
359297 2003 29.9 m 13.1 m 12,129 High traffic volume, no visible distresses 
359319 2003 11.3 m 21.3 m 875 Low traffic volume, no visible distresses 

Bridge 358620 is located at the intersection of Edith Blvd and the North Division Channel (Figure 
6). For geographic reference purpose, it is located 2.25 km (1.4 miles) north of Alameda Blvd. 
This bridge was built in 1967, and its end of functional service life (EFSL) is 2033. The material 
for the bridge is pre-stressed concrete. The material for the wearing surface is asphalt concrete. 
The road width is 8.5 m (2 lanes), and there is no parallel bridge to it. According to the last 
inspection conducted in 2019, the deck condition is satisfactory. However, the wearing surface has 
many distresses such as cracks and bleeding. Additionally, superstructure condition is good while 
the substructure condition is fair. 

Figure 6. Google Maps Satellite view of Bridge 358620. 

Once the bridge was selected for data collection, the project team visited the bridge 12 times to fly 
the selected S-UAS to develop best practices for field data collection. The project team visited the 
bridge on a bi-weekly basis from January to June 2020. The project team successfully developed 
best practices for using the selected S-UAS to collect natural color aerial photos. 
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During the field test, the project team also explored the utility of the thermal-infrared camera in 
collecting thermal-infrared images. Unfortunately, the project team did not successfully find any 
delamination in the bridge deck with the Flir C5 thermal-infrared camera. Mr. George Baca, who 
is NMDOT’s contractor to perform bridge inspection across the State of New Mexico, also 
confirmed that Bridge 358620 does not have any delamination issues. The project team wanted to 
collect data in the same field to avoid multiple trips and save time. With the help of Mr. George 
Baca, the project team identified and located a concrete retaining wall that has delamination issues. 
The concrete retaining wall is close to a railroad bridge, which is approximately 150 meters away 
from Bridge 358620 (Figure 7). The project team was not able to find any information regarding 
the railroad bridge. 

Figure 7. The retaining wall with delamination issues near Bridge 358620. 

For natural color aerial imagery collection, the project team visited Bridge 358620 on August 14, 
2020 from 10:00 am to noon. The date was also coordinated with Mr. George Baca to conduct 
ground survey (visual inspection and tape measurement) of the wearing surface distresses. The 
ground survey was focused on the count, length, and width of the cracks in the wearing surface. 
The ground survey results were used in the Analysis and Findings Section. 

A mobile application referred to as Map Pilot for DJI developed by Drones Made Easy was used 
for flight planning. Users can use it to create and fly their own optimal flight paths to collect 
geotagged (longitude, latitude, and ellipsoidal height) aerial photos that are in highly overlapping 
patterns. According to Zhang et al. (18), SfM requires a high degree of overlap (75% for sidelap 
and 80% for forward overlap). To ensure sufficient overlap, this study used a grid flight path 
instead of a normal flight path (Figure 8). There are power lines on the west side of bridge, and 
the height of the power lines are approximately 20 meters. Therefore, the project team decided to 
fly the S-UAS at an altitude of 23 meters above the ground level (AGL) to avoid collision with 
power lines and at the same time to obtain natural color aerial images with acceptable spatial 
resolution (5 mm) to identify cracks on the wearing surface. 
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Figure 8. An Illustration of the normal flight path and grid flight path (adopted from Pix4D). 

Figure 9 shows the graphic user interface (GUI) of the Map Pilot for DJI mobile application. The 
purple solid dot indicates the take-off and landing point for the S-UAS. The orange dots indicate 
the corner points of the bounding box of the flight path. The small green and red dots indicate the 
start point and end point of the flight path, respectively. The bridge was completely covered the 
flight path. The flight path also covered the immediate surroundings of the bridge to ensure the 
positional accuracy of the rapid depth change of the bridge structure. According to Hughes et al. 
(26), a 10 to 25 meters buffer should be applied to the study to minimize depth errors of DSMs. 
Their investigations revealed that DSM depth errors are greatest on steeper slopes. A bridge deck 
is similar to a flat ground, while the edge of the bridge structure is similar to a cliff. 

Figure 9. An Illustration of the flight path for natural color aerial imagery collection. 
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With a grid flight path, a total of 92 geotagged aerial photos in JPEG format were collected. The 
entire flight duration is 5 minutes and 30 seconds, and the total data volume is 0.75GB. The flight 
altitude is 23 meters AGL, which results in a spatial resolution of 0.5 cm or 5 mm. The forward 
overlap is 80% and the sidelap is 75%. Figure 10 and Figure 11 show the flight plan specifications. 

Figure 10. The duration, photo quantify, photo size, and altitude of the designed flight path. 

Figure 11. The forward overlap and sidelap of the designed flight path. 
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Figure 12 shows an example of the collected natural color aerial photos (5,472 x 3,648 pixels). 
The spatial resolution of these photos is 0.5 cm (5 mm). The cracks on the wearing surface can be 
easily identified. The asphalt crack sealing can also be identified. During data collection, the sky 
was overcast, and therefore, there are no shadows in the photos. It should be noted that none of 
these aerial images cover the entire bridge due to hyper-spatial resolution imagery acquisition. The 
higher the spatial resolution, the more detail it will contain, and the smaller ground coverage it will 
contain. Figure 13 shows the location of exposure stations of all 92 aerial photos. 

Figure 12. An example of the natural color aerial imagery collection. 

Figure 13. The exposure stations of all 92 aerial photos. 
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After aerial photo collection, the project team also collected ground control points (GCP) for image 
processing in SfM. GCPs are points on the ground surface with known coordinates (longitude, 
latitude, and altitude). They are commonly used in the SfM process to orientate and calibrate the 
output point cloud to ensure a high degree of global positional accuracy. Detailed information 
regarding GCPs will be discussed in the next section. 

The project team collected 10 GCPs (Figure 14 and Figure 15). As a rule of thumb, SfM requires 
a minimum of three GCPs for image processing, and no more than 10 are usually needed. These 
10 GCPs are noticeable objects on the wearing surface, including sharp edges of cracking, 
intersections of cracking, and asphalt stains. These GCPs are evenly distributed across the bridge 
deck, and they are not obstructed by visual obstacles such as shadows or glares. Another rule of 
thumb is that if the study area being mapped has noticeable elevation changes like hills and valleys, 
at least one GCP should be placed on each of the major elevation terrains. The 10 GCPs are all 
located on the bridge deck because there are no noticeable elevation changes across the bridge. 

The coordinates of the GCPs were collected using a Real-Time Kinematics (RTK) system in a 
rover/based configuration. RTK is used to enhance the precision of positional data obtained from 
Global Navigation Satellite System (GNSS), which is the combination of existing satellite 
navigation systems such as GPS, GLONASS, Galileo, and Beidou. RTK uses not only the satellite 
signal’s information content but also the measurements of the phase of the signal’s carrier wave, 
and it is characterized by using a moving device referred to as the rover and a single reference 
station referred to as the base to provide real-time corrections, delivering up to mm-level accuracy. 

The project team has access to a few RTK systems. These systems include a Trimble R10, an 
Emlid Reach RS, and an Emlid Reach RS2. The project team used the Emlid Reach RS2 system 
to collect the coordinates of the GCPs because of its simplicity, low cost, and high accuracy. 

Figure 14. The locations of the collected GCPs. 
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Figure 15. A zoomed-in example of the collected GCPs. 

The coordinates of the collected GCPs are presented in longitude, latitude, and altitude (ellipsoidal 
height) formats. The GCPs were post-processed with the software of EZSurv developed by Effigis 
(Figure 16). This software uses the National Oceanic and Atmospheric Administration (NOAA) 
Online Positioning User Service (OPUS) to post-process the surveyed coordinates and the ultimate 
root mean square error (RMSE) was 0.003m + 1 ppm horizontally and 0.006m + 1 ppm vertically. 
Considering the spatial resolution of the aerial photos is 0.005 m, the accuracy of the GCP is able 
to process the aerial photos in SfM effectively. A previous research conducted by the project team 
revealed that when the accuracy of the GCPs are close to the spatial resolution of the aerial photos, 
the orthophotos and DSMs created by SfM has similar horizontal accuracy and vertical accuracy 
to the GCPs (15). 

Figure 16. The user interface of the EZSurv software. 
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Flir C5 was used for thermal infrared imagery collection. The use of a thermal infrared camera for 
imagery collection is referred to as passive infrared thermography because the energy from 
sunlight or ambient temperature change are the main heating source for this application (13). 
Thermal infrared cameras can capture the radiant temperature of an object’s surface and then 
convert the temperature measurement into a pseudocolor image in which the brighter colors (e.g., 
red, orange, and yellow) indicate warmer temperatures while darker (e.g., blue, purple, and black) 
indicate cooler temperatures. In addition, the actual temperature (true kinematic temperature) of 
an object reported on the Flir C5 camera are automatically corrected based on the object’s 
emissivity, which is a measure of the object’s ability to emit infrared energy. It is the ratio of the 
energy radiated by an object at a given temperature to the energy emitted by a blackbody (perfect 
radiator), and its value ranges from 0 to 1, with 0 being as a perfect reflector and 1 being as a 
perfect emitter. An object emissivity is influenced by many factors, including but not limited to, 
surface roughness, angle of view, field of view, object moisture, and color. The emissivity of 
concrete is approximately 0.95 (13). 

The concept behind the use of a thermal infrared camera in delamination evaluation is that the 
anomalies and subsurface delamination in concrete will interrupt the heat transfer, and ultimately, 
influence the amount of radiant energy emitted from the concrete surface (13). As the ambient 
temperature rises during the day, concrete will absorb heat and at the same time emit radiant 
energy. However, delamination and air voids in concrete will resist heat transfer, which make them 
warm up at a faster rate than the surrounding concrete that is in good shape. Subsequently, 
delamination appears warmer on thermal infrared images. On the contrary, as the ambient 
temperature decreases during evening time, delamination and air voids in concrete will lose heat 
at a faster rate than the surrounding good concrete, and subsequently, delamination appears coolers 
on thermal infrared images (13, 27). 

For thermal infrared thermography, time of data collection is the most critical factor to consider. 
This is because different materials in the outdoor environment respond differently to ambient 
temperature change, which ultimately influence their radiant energy emission processes 
throughout the day. Two crossover times have been identified as threshold times, including local 
sunrise and sunset time, because at these two times radiant temperatures of all materials are the 
same (13). A study revealed that the effective time to conduct thermal imaging tasks depends on 
the depth of concrete delamination: on the thermal infrared images, the most contrast appears on 
four hours after sunrise for a 5.1 cm (2-inch) deep delamination and 7 hours after sunrise for a 7.6 
cm (3-inch) deep delamination (27). Additionally, the study revealed that thermal infrared imaging 
techniques are not possible to detect any delamination that is deeper than 7.6 cm (27). 

It should be noted that other factors such as moisture, asphalt stains, oil spills, and even 
environmental factors also affect the thermal infrared imaging results – a hot or cold spot on a 
thermal infrared image does not always attribute to delamination (28). A few studies have been 
focused on exploring the ideal condition for using thermal infrared imaging techniques for 
detecting concrete delamination, but it is not operationally practical to achieve these ideal 
conditions for most field missions (13). 

For this project, the data collection for thermal infrared images has been discussed at the beginning 
of this section. The project team collected data on August 18, 2020 and the sunrise time for that 
day was 6:29 am. The best time for data collection was 10:30 am and the actual data collection 
time was 11:10 am. The humidity of data collection time was 26%. The high temperature of that 
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day was 33°C (92°F) and the low temperature was 20°C (68°F). The project team collected thermal 
infrared images for 10 locations but only one location has delamination issues, and the depth of 
the delamination is approximately 5.1 cm (2-inch). A natural color photo (5-megapixle) that is co-
registered to the thermal image was also taken by the Flir C5 camera (Figure 17). The unit of the 
temperature in Figure 17 (a) is degree Celsius. It should be noted that these photos are not 
geotagged because the Flir C5 does not have built-in GPS unit. 

Figure 17. An illustration of the collected thermal-infrared image and matching natural color image. 

4.2. Data Processing 
This section focuses on discussing the major steps of using SfM technique to process the collected 
hyper-spatial natural color aerial photos to derive co-registered orthophotos and DSMs, which are 
then used as the input to the crack detection tool. It should be noted that post-processing of the 
collected thermal infrared photos is not required. That being said, the collected thermal infrared 
photos will be used directly as the input to the delamination detection tool. 

As aforementioned, SfM is a photogrammetric technique that can be used to create 3D objects by 
analyzing overlapping aerial images captured from varied perspective at approximately the spatial 
resolution of input images (17-18). For instance, if the input aerial photos have a spatial resolution 
of 5 mm, the output orthophotos and DSMs will have approximately same spatial resolution (i.e., 
5mm). 

In recent years, many commercial or free and open sources software programs for SfM have 
emerged. The project team has access to a few of them, including Agisoft Metashape, Menci APS, 
Pix4D Mapper, Trimble Inpho UASMaster, DroneDeploy, Imagine UAV, ArcGIS Drone2Map, 
PhotoMOD UAS, WebODM, and VisualSFM. Both WebODM and VisualSFM are free and open 
source, and the remaining programs are commercial. The project team has explored all software 
packages and evaluated them in the following criteria shown in Table 6: (1) operational simplicity 
(e.g., learning curve); (2) control parameters (e.g., the amount of available parameters for the 
output products); (3) output quality; (4) processing speed; and (5) cost. Each of the criteria was 
scored on a scale of 1 to 5 (1 = Very Poor, 2 = Poor, 3 = Fair, 4 = Good, and 5 = Very Good). The 
total score for a perfect option will be 25, and a passing grade needs to be 15 (60%). 
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Table 6. A list of available software programs for SfM. 

Software 
Operational 
Simplicity 

Control 
Parameters 

Output 
Quality 

Processing 
Speed 

Cost 
Total 
Score 

Agisoft 
Metashape 

5 5 5 5 
$3,499 
perpetual (4) 

24 

Menci APS 5 3 4 5 
$6,300 
perpetual (2) 

19 

Pix4d Mapper 5 4 4 4 
$4,990 
perpetual (3) 

20 

Trimble Inpho 
UASMaster 

4 3 3 4 
$9,680 
perpetual (1) 

15 

DroneDeploy 5 4 4 5 
$5,400 
annual (4) 

22 

Imagine UAV 3 3 3 3 
$5,200 
Perpetual (4) 

16 

ArcGIS 
Drone2Map 

4 3 4 3 
$1,500 
Annual (5) 

19 

PhotoMOD 
UAS 

3 4 4 3 
$2,300 
perpetual (5) 

19 

WebODM 5 2 3 5 Free (5) 20 

VisualSFM 3 2 2 5 Free (5) 17 

As it revealed in Table 6, based on the project team’s evaluation, the best software program (the 
one with the highest score) for SfM is Agisoft Metashape. The project team used this software to 
conduct SfM to process the collected hyper-spatial resolution natural color aerial photos. This 
software is previously known as Agisoft Photoscan, which was developed by Agisoft LLC. It is 
widely used in the UAS mapping field and it can run on multiple operating systems, including 
Microsoft Windows, MacOS, and Linux. 

The following section discusses the general steps in SfM. It should be noted that no matter what 
software programs are used to conduct SfM, the steps below are generally involved. This section 
focuses on discussing the main concepts underlying the SfM method. Detailed mathematical 
equations or algorithms are intentionally not discussed. That said, the section aims to present the 
typical processed involved in the reconstruction of 3D geometry from a sequence of overlapped 
standard aerial imagery. 

In photogrammetry and remote sensing, the full name of the technique used to process S-UAS 
acquired aerial photos to generate co-registered orthophotos and DSMs is referred to as Structure-
from-Motion and Multiple-View Stereo (SfM-MVS), which is also known as aerial triangulation 
(AT). SfM is only one of the steps in SfM-MVS. For simplification purpose, this study used SfM 
to indicate SfM-MVS. There are eight primary steps in SfM (Figure 18), which are discussed in 
the following sections. It should be noted that the keypoint correspondence step and the keypoint 
filtering step are conducted concurrently in a typical software program. 
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Figure 18. The typical steps in SfM. Blue color items indicate steps while red color items indicate inputs. 

4.2.1. Image Quality Assessment and Import 
In this step, each collected hyper-spatial resolution aerial photo will be assessed in four criteria to 
ensure its quality, including brightness, contrast, sharpness, and coordinates. Brightness refers to 
the overall lightness or darkness of the photo. Contrast refers to the difference in brightness 
between objects or sections in the photo. Sharpness refers to clarify of detail in the photo. An aerial 
photo in good quality should have balanced brightness, contrast, and sharpness. Additionally, each 
aerial photo should be assessed to examine if they have been geotagged. That said, each aerial 
photo should be assessed to examine if they have missing geographic coordinate information. An 
aerial photo should be excluded from processing if they are blurry and unusable (e.g., not 
geotagged). For this study, all 92 aerial photos are in good quality and they can be imported into 
Agisoft Metashape for the next processing step. 

4.2.2. Feature Detection 
This step focuses on identifying common points on several aerial images that are overlapped and 
then matching a point to itself in each image (Figure 19). These points are referred to as keypoints, 
and they enable the different photos to be matched and the scene geometry to be reconstructed. 
This is a computational challenging task because keypoints need to be matched on images with 
variable 3D position, scale, and orientation (29). Many techniques have been developed to identify 
keypoints, and each of them has both strengths and weakness. The widely adopted method for 
identifying keypoints focuses on recognizing feature object (a group of pixels that comprise an 
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object in the photo) and then locating each matching keypoint. The feature detection algorithm 
used in Agisoft Metashape is the scale-invariant feature transform (SIFT) object recognition 
system (30). 

Figure 19. An illustration of the concept of keypoint identification (adopted from opencv.org). The blue points are 
keypoints identified in each image. 

4.2.3. Keypoint Correspondence 
Once keypoints have been identified and located in each aerial image, correspondence between 
keypoints in different images need to be determined and established (Figure 20). It should be noted 
that there is no assurance that any given keypoint will definitely have a matching point in another 
image, and therefore, this step involves discarding points without matching partner as well. There 
are many methods for determining and establishing correspondence between keypoints, and as for 
feature detection, each of them has both strengths and weaknesses. In Agisoft Metashape, the 
method for determining and establishing keypoint correspondence, which is also implemented by 
SIFT, is the approximate nearest neighbor (ANN) method (31). 

Figure 20. An illustration of the concept of keypoint correspondence (adopted from ismailsirma.com). The blue lines are 
established keypoint correspondence. 

4.2.4. Keypoint Filtering 
To obtain high-quality keypoint correspondence, a further step is needed to filter out any erroneous 
matches to ensure that only correct ones remain. Many methods are available for the filtering 
process, but each of them has both strengths and weaknesses. The method used by Agisoft 
Metashape is a robust and accurate Random Sample Consensus (RANSAC) filter (30). The 
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RANSAC method assumes that all keypoints can be divided into two groups, including outliers 
and inliers. All outliers will be removed from the keypoint correspondence dataset. 

4.2.5. Structure from Motion (SfM) 
This step focuses on estimating camera poses as well as the 3D geometry of a scene. In this step, 
the geometrically correct keypoint correspondence identified in the previous section is used to 
estimate extrinsic camera calibration parameters (e.g., camera positions and orientations) and 
intrinsic camera calibration parameters (e.g., sensor distortions). After the camera parameters are 
estimated, bundle block adjustment is used for simultaneously refining the 3D coordinates 
describing the scene geometry, the parameters of the relative motion, and camera calibration 
parameters. Bundle block adjustment produces jointly optimal 3D structure and viewing parameter 
estimates using all input images simultaneously (32). At the end of this step, a sparse point cloud 
and reconstructed camera poses are generated (Figure 21). The sparse point cloud is used in many 
applications of SfM, although further processing such as multiple-view stereo is required to create 
more detailed scene surface. For this study, a sparse point cloud with a total 3,479,183 points was 
created. 

Figure 21. An illustration of reconstructed sparse point cloud and camera poses. 

4.2.6. Scaling and Georeferencing 
It should be noted that the SfM step only estimates relative camera locations and scene geometry. 
Absolute distances between cameras or between reconstructed points cannot be recovered from 
aerial images alone, regardless of how many cameras or points are used (33). If the aerial photos 
are not geotagged, the output sparse point cloud is produced in an arbitrary coordinate system. If 
the aerial photos are geotagged, the output sparse point cloud is produced in a coordinate system 
as the aerial photos. Although the aerial photos used in this study are geotagged, in general the 

26 



 

                   
             

               
               

               
                  

             
             

             
               
        

 
               

    
              

               
             

           
               

               
               
              

               
                 

                 
               

                 

built-in GPS receiver in S-UAS is not as accurate as a ground survey unit, which leads to a 3D 
scene geometry with low accuracy. Therefore, this study used GCPs surveyed with RTK 
equipment are used to improve the accuracy of the 3D coordinates describing the scene geometry. 
Figure 22 shows the use of GCPs to georeference and scale a sparse point cloud. 

It should be noted that S-UAS with onboard RTK receiver can greatly improve geometry accuracy 
of the sparse point cloud, but most S-UAS only have built-in GPS receivers. It should also be noted 
that accuracy requirement varies – it depends on survey purposes. Fine-scale distresses are 
expected for bridge condition evaluation, and therefore, a 3D scene with high-accuracy geometry 
(i.e., sub-centimeter level) is recommended. However, for other purposes such as terrain mapping 
for a large area, a 3D scene with low-accuracy geometry (e.g., sub-meter) is generally suggested, 
and therefore, built-in GPS receivers are adequate. 

Figure 22. An illustration of using GCPs for georeference and scaling a sparse point cloud. 

4.2.7. Multi-View Stereo (MVS) 
This step uses SfM estimated camera parameters to create depth maps to conduct dense 
reconstruction. Many methods are available for MVS, and each of them has both strengths and 
weaknesses, but in general, they can be classified into three groups, including Voxel-based 
methods, surface evolution-based methods, depth map merging methods, and patch-based methods 
(34). Agisoft Metashape uses depth map merging method, which builds a depth map for each 
image and merges them to produce a dense reconstruction. This allows for parallelization but at 
the expense of noisy and highly redundant depth maps that require further post-processing to clean 
and merge (35). When the amount of image increases, the required random-access memory (RAM) 
for depth map merging method increases rapidly and issues of scalability emerge. The solution to 
this RAM issue is image clustering, which splits a large project into many small chunks. For this 
research project, the amount of input aerial photos is 92, which does not need image clustering. A 
computer with 64GB RAM should be able to process 1,000 aerial images with ultra-high quality, 
which is sufficient for most bridges in the U.S. This step creates a georeferenced and scaled dense 
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point cloud (Figure 23). For this study, a sparse point cloud with a total 126,609,438 points was 
created. 

Figure 23. An illustration of a reconstructed dense point cloud. 

4.2.8. Co-Registered Orthophotos and DSMs 
The dense point cloud generated in the previous step is used in this step to create a triangulated 
irregular network (TIN) mesh. Subsequently, the dense point cloud is rasterized to create a DSM, 
which is a grid representation of the Earth surface. The DSM is then used as a project surface 
during orthocorrection of the input aerial images. The orthocorrected images are then mosaicked 
to generate an orthophoto that is co-registered with the DSM. The orthophoto and DSM are 
generated in a single processing routine and they can be exported as rasters in GeoTIFF format. 
For this study, the exported orthophoto and DSM are at a spatial resolution of 0.005 m (Figure 24). 

Figure 24. An illustration of a co-registered orthophoto (a) and DSM (b). 
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4.3. Analysis Tool Development 
For this task, a toolset that is compatible with standard GIS software program (i.e., ArcGIS 
ArcMap) was developed to analyze the natural color orthophoto and DSM as well as thermal-
infrared imagery to extract bridge deck wearing surface distresses (i.e., cracking) and subsurface 
distress (i.e., delamination). Specifically, the co-registered natural color orthophoto and DSM were 
analyzed to extract bridge deck wearing cracking. Additionally, the thermal-infrared imagery was 
analyzed to extract subsurface delamination. It should be noted that this toolset was developed 
with the Python programming language. 

4.3.1. Cracking Extraction Tool 
Cracking extraction tool was developed with three image processing techniques, including image 
enhancement, image fusion, and image difference. This tool has two primary outputs, including an 
orthophoto and DSM fused image to accentuate bridge deck wearing surface cracking and a height 
difference image to highlight bridge deck wearing surface cracking. 

In this tool, eight shaded relief images are created from the input DSM at a 45-degree interval (i.e., 
45, 90, 135, 180, 225, 270, 315, 360 degrees). Then an average of these eight shaded relief images 
are conducted to create a mean shaded relief image. Additionally, the orthophoto is used to create 
an albedo image based on the average pixel value of the visible red, green, and blue bands. Finally, 
the mean shaded relief image and the albedo image are fused based on an average operation to 
create the fused image to accentuate bridge deck wearing surface cracking (Figure 25). 

Figure 25. An illustration of the orthophoto and DSM fused image. 

This tool also conducts image enhancement to the DSM image through a 5 x 5 focal statistics tool 
with maximum values to enhance geometric information. Then the enhanced DSM and the original 
DSM are differenced based on a subtract operation to create a differenced DSM image. 
Subsequently, the differenced DSM image is reclassified to assign null values to any pixels that 
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have an elevation value that is greater than 0.016 m. (0.75-inch). According to Mr. George Baca, 
most wearing surface cracks are less than 0.016 m. Figure 26 shows the height difference image 
to highlight bridge deck wearing surface cracking. 

Figure 26. An illustration of the enhanced DSM and original DSM differenced image. 

4.3.2. Delamination Extraction Tool 
Delamination extraction tool was developed with a couple of image processing techniques, 
including principal component analysis (PAC) and OBIA. PCA can reduce the dimensionality of 
an image. It transforms an original band correlated image into a substantially smaller set of un-
correlated components. The result of this technique is a multiband image with the same number of 
bands as the specified number of components. The input thermal-infrared image has three bands, 
and therefore, the output image of PCA has three components. The delamination section was most 
noticeable in the second component, and therefore, Component 2 was used as the input for the 
following step of OBIA (Figure 27). 

As mentioned in the Literature Review section, OBIA segments an image by grouping pixels 
together into vector objects, which are then used for the classification process (assigning a pixel 
or a group of pixels to a land cover class). The segmentation process defines homogenous image 
pixels into spectrally, spatially, geometrically, and contextually similar regions. These regions 
Couple with the Random Forest Classifier, OBIA was used to segment the Component 2 image. 
The resultant segmented image has a pixel value range of 19 to 251. The project team examined 
the segmented image and identified that any pixels that have a value greater than 125 were located 
in the delamination area. Subsequently, only the pixels that have a value greater than 125 were 
selected and the remaining pixels were set to no values (null). The selected pixels were 
polygonized and exported as a single shapefile for further engineering evaluation (Figure 28). It 
should be noted that the delamination shapefile is not georeferenced, and therefore, it can only 
help locate the delamination spot. Users are recommended to use their GPS enabled cell phone or 
cameras to capture a picture of the same scene for revisiting purposes. 
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Figure 27. An illustration of PCA with the original thermal-infrared image and three components; (a) original thermal-
infrared image; (b) the Component 1 image; (c) the Component 2 image; (d) the Component 3 image. Degree Celsius. 

Figure 28. An illustration of OBIA with the Component 2 image. Specifically, Figure 28 (a) shows the Component image; 
Figure 28 (b) shows the segmented image; and Figure 28 (c) show the polygonized hotspot to indicate the delamination 
location. 

4.4. Accuracy Validation 
For this task, the project team conducted a validation study to investigate the accuracy of the 
detected bridge deck wearing surface cracking and subsurface delamination. For bridge deck 
wearing surface cracking evaluation, the project team studied the count, length, and width of the 
detected cracks. For count study, the fused image and the differenced image were used separately 
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and jointly to digitize cracks. Then the successful detection rates were studied. For length and 
width study, the project team obtained the measurements from the images and then statistically 
compared them with the ground-truth measurements. The project team had a sample size of 16, 
which is less 30, and therefore non-parametric statistical tests were used in this study (36). Non-
parametric Wilcoxon Signed Rank Test and Mann-Whitney U Test were used to examine if aerial 
imagery-based measurements and ground-based measurements are statistically similar. For 
subsurface delamination evaluation, the project team digitized the delamination area based on the 
thermal-infrared image and then compared it with the tool detected area. However, the project 
team cannot conduct any formal statistical test because there are no adequate samples. Detailed 
information for accuracy validation is provided in the Analysis and Findings section. 
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5. ANALYSIS AND FINDINGS 

This section focuses on discussing the analysis results and findings. It should be noted that some 
of the results have been discussed in the Methodology section, and therefore, they are not discussed 
in this section again to avoid duplication work. 

5.1. Data Collection Results 
An S-UAS, DJI Mavic Pro 2 was selected as the optimal platform for hyper-spatial natural color 
aerial imagery collection. A handheld Flir C5 camera was selected as the sensor for thermal-
infrared imagery collection. A set of 92 hyper-spatial resolution aerial photos were successfully 
collected with the selected S-UAS. A thermal-infrared image was also successfully collected. 

5.2. Image Processing Results 
Hyper-spatial resolution natural color aerial images (0.005 m) were processed with SfM technique 
to create a co-registered orthophoto and DSM. The orthophoto is a natural color image that has a 
spatial resolution of 0.005 m. The DSM is a single band image with Z values depicting elevations 
of the top of reflective surfaces such as building and vegetation. Figure 29 shows the co-registered 
orthophoto and DSM in shaded relief view. As it shows in this figure, the cracks on the wearing 
surface are observable in both Orthophoto and DSM. The cracks in the orthophoto are visible but 
the observation is lack of depth perception. When coupled with DSM, cracks are not only visible 
but also depth perceptible, which enables cracking detection simpler. 

Figure 29. An illustration of the SfM products; (a) an overview of the orthophoto; (b) an overview of the DSM in shaded 
relief view; (c) a zoomed in view of the orthophoto; and (d) a zoomed in view of the DSM in shaded relief view. 

5.3. Analysis Tool Development 
An analysis toolset was successfully developed by the project team. This toolset has two tools, 
which include a cracking detection tool (Figure 30) and a delamination detection tool (Figure 31). 
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Both tools were developed with the Python programming language and the code base will be make 
publicly available and accessible through EDAC’s GitHub account. Detailed methods and steps of 
developing these tools can be found in the Methodology section. Additionally, detailed instruction 
on how to use these tools are provided in Appendix A. The project team will also develop an 
instruction video and upload it to EDAC’s YouTube channel. 

Figure 30. The user interface of the cracking detection tool. 

Figure 31. The user interface of the delamination detection tool. 
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The cracking detection tool was developed to detect cracks on the wearing surface of a bridge 
deck. As it shown in Figure 30, users only need to provide a co-registered orthophoto and DSM 
and the tool will automatically produce two maps with one accentuating cracks and another one 
highlighting cracks. That being said, this tool only needs two input parameters – an orthophoto 
and a DSM. Subsequently, the use of this tool is straightforward, and the learning curve is not 
deep. Figure 32 shows workflow of the cracking detection tool. 

Figure 32. The workflow of the cracking detection tool. 
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The delamination detection tool was developed to detect delamination spots in a bridge deck. As 
it shown in Figure 31, users need to provide a thermal-infrared image and then provide values for 
spectral detail, spatial detail, and minimum segment size in pixels. Users are encouraged to use the 
default values of 20, 20, and 100, respectively. Spectral detail indicates the level of importance of 
spectral difference to identify features, and its values range from 1.0 to 20.0. A higher value is 
more appropriate when the individual features to be identified have similar spectral characteristics. 
Spatial detail indicates the level of importance of proximity to identify features, and its values 
range from 1.0 to 20.0. A higher value is more appropriate when the individual features to be 
identified are small and clustered together. Minimum segment size in pixels indicate a size that 
any segment smaller than it will be merged to create a segment section. Figure 33 shows the 
workflow of the delamination detection tool. 

Figure 33. The workflow of the delamination detection tool. 
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5.4. Accuracy Validation 

5.4.1. Wearing Surface Cracking Validation 
For count accuracy validation, the project team used the ground survey results as the ground-truth 
data. The total amount of cracks identified through field survey is 16 (Figure 34). When using only 
the crack-highlighting image, ten cracks were identified, including crack ID 2, 3, 5-9, 12, and 14 
(Figure 35). However, when using only the crack-accentuating image, all 16 cracks were 
successfully identified (Figure 36). The results were summarized in Table 7. 

Results revealed that the crack-accentuating image can effectively identify cracks on the wearing 
surface of a bridge deck. In addition, the crack-highlighting image cannot effectively identify all 
cracks. However, crack-highlighting image can assist bridge inspectors with quick engineering 
reviews and high-level information checks. It also provides a good starting point for crack 
identification. When coupled with the crack-accentuating image, crack-highlighting image can 
also be effectively used to identify cracks on the wearing surface of a bridge deck. 

Figure 34. The locations of the cracks identified through field survey. 

Table 7. A Summary of the Identified Cracks through Various Methods. 

Methods Identified Cracks Total Cracks Successful Rate 

Ground Survey 16 16 100% 

Crack-Highlighting Image Survey (1) 9 16 56% 

Crack-Accentuating Image Survey (2) 16 16 100% 

Combination of (1) and (2) 16 16 100% 
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Figure 35. The cracks identified when using the crack-highlighting image. 

Figure 36. The cracks identified when using the crack-accentuating image. 
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For length and width accuracy validation, the project team also used the ground survey results as 
the ground-truth data. In addition, the project team used the orthophoto to conduct on-screen image 
measurement to record the length and width for each crack. The measurement results were 
summarized in Table 8. 

Table 8. A Summary of Crack Length and Width Measurements. 

Crack ID 

1 

Length Ground 
Survey (meter) 
2.675 

Length Orthophoto 
Survey (meter) 
2.673 

Width Ground 
Survey (meter) 
0.023 

Width Orthophoto 
Survey (meter) 
0.021 

2 1.875 1.871 0.029 0.025 
3 2.965 2.959 0.013 0.015 
4 0.641 0.648 0.015 0.013 
5 1.089 1.095 0.011 0.013 
6 1.270 1.268 0.025 0.026 
7 1.564 1.562 0.022 0.024 
8 1.147 1.153 0.013 0.017 
9 0.686 0.687 0.021 0.018 
10 0.075 0.077 0.023 0.022 
11 0.675 0.672 0.018 0.016 
12 0.961 0.963 0.020 0.016 
13 0.728 0.731 0.017 0.016 
14 2.247 2.240 0.013 0.011 
15 1.495 1.492 0.017 0.018 
16 1.397 1.395 0.022 0.019 

The histogram distribution pattern of length and width measurements were presented in Figure 37. 
As it shows, for length measurements, ground survey results exhibit the same histogram 
distribution pattern. For width measurements, ground survey results exhibit similar histogram 
distribution. This is because there are not many samples and the measurement interval may affect 
the visualization results. Therefore, a box plot was also used to examine the distribution pattern of 
length and width measurements. Figure 38 and Figure 39 were used for length measurements and 
width measurements respectively to investigate if the ground-based measurements and the 
orthophoto-based measurements have substantial difference in medians. As shown in Figure 38, 
box plot did not show a substantial difference in the medians between ground-based length 
measurements and orthophoto-based length measurements. There also did not appear to be a 
substantial difference in the box sizes. As shown in Figure 39, box plot did not show a substantial 
difference in the medians between ground-based width measurements and orthophoto-based width 
measurements. However, there appeared to be a minor difference in the box sizes. No 
aforementioned plots revealed a substantial difference in the shape and spread of distribution 
between the two sets of measurements for both crack length and width. 

Continuing with visual analysis, formal statistical tests were conducted. It should be noted that the 
measurement results were compared as a paired group and unpaired group. Paired group tests are 
more appropriate when the two groups of measurements are dependent (e.g., repeated 
measurement for the same subject but at two different time). Unpaired group tests are more 
appropriate when the two groups of measurements are independent (e.g., measurement for one 
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sample in Group A has no influence on the measurement for one sample in Group B). The 
relationship between ground-based measurement and orthophoto-based measurement can be 
interpreted in both a dependent way and independent way, and therefore, both of them were 
performed in this study. 

Figure 37. Histogram shapes of crack length and width measurements; (a) ground survey length; (b) orthophoto survey 
length; (c) ground survey width; and (d) orthophoto survey width. 

Figure 38. Box plot of crack length measurements; (a) ground survey length; and (b) orthophoto survey length. 
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Figure 39. Box plot of crack width measurements; (a) ground survey width; and (b) orthophoto survey width. 

In the dependent way, repeated measurements of length and width for a specific crack were 
performed on the ground and from the orthophoto at two different times, and therefore, they are 
dependent. In the independent way, the ground-based measurements of a specific crack have no 
influence on the orthophoto-based measurements because they are measured from two different 
data sources. Since the relationship can be interpreted in both ways, to err on the side of caution, 
this research used both paired group and unpaired group statistical tests. 

As previously mentioned in the Methodology section, non-parametric Wilcoxon Signed Rank Test 
and Mann Whitney U Test were used to examine if ground-based length and width measurements 
are statistically different from orthophoto-based length and width measurements. This is because 
the sample size is 16, which is less than 30 (36), which indicates the sample values might not be 
normally distributed. Parametric statistical tests assume a normal distribution lf values. More 
specifically, the Wilcoxon Signed Rank Test is a paired group test, and its matching parametric 
test is paired T-test, while the Mann Whitney U Test is an unpaired group test, and its matching 
parametric test is unpaired T-test. 

Wilcoxon Signed Rank Test was performed to compare the measurement results of both length 
and width at the paired group level. Results were summarized in Table 9. As it shown in Table 9, 
for both length and width measurements, the p-value is greater than 0.05, and therefore, the null 
hypothesis should be accepted, and subsequently indicating that for both length and width the 
median difference between the paired ground-based measurement and orthophoto-based 
measurement is zero at a 5% significance level. In other words, for both length and width, ground-
based measurements and orthophoto-based measurements are not statistically different at a 5% 
significance level. 
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Table 9. Wilcoxon Signed Rank Test Results for Length and Width Measurements. 

Test ID 

1 

Measurement Type 

Length 

Null Hypothesis 

The median difference between the two-paired 
measurements (ground-based measurement vs. 
orthophoto-based measurement) is zero. 

p-Value 

0.8036 

2 Width 
The median difference between the two-paired 
measurements (ground-based measurement vs. 
orthophoto-based measurement) is zero. 

0.4545 

The Mann Whitney U Test was performed to compare the measurements in an unpaired group 
way. Although this test does not require normally distributed data, it requires data from each 
population must be an independent random sample, and the population must have equal variances. 
For non-normally distributed data, the Levene’s Test and Bartlett’s Test are usually used to 
examine variance equability. 

For the Levene’s Test and Bartlett’s Test, the null hypothesis is that the population variances are 
equal. Test results were summarized in Table 10. For both length and width, the p-value is greater 
than 0.05, and therefore, the null hypothesis should be accepted, and subsequently indicating that 
the population variances for both length and width measurements are equal at a 5% significance 
level. Ultimately, the Mann Whitney U Test is appropriate for both length and width. 

Table 10. Levene’s Test and Bartlett’s Test Results. 

Type 

Length 

Comparison 

Ground-based vs. 
Orthophoto-based 
Measurement 

Null Hypothesis 

Population variances are 
equal 

Levene’s Test 
p-Value 

0.9857 

Bartlett’s Test 
p-Value 

0.9891 

Width 
Ground-based vs. 
Orthophoto-based 
Measurement 

Population variances are 
equal 

0.4315 0.6064 

Continuing with the Mann Whitney U Test, the null hypothesis is that there is no difference in the 
distribution (shape and spread) of ground-based length and width measurements and orthophoto-
based length and width measurements. Test results were summarized in Table 11. 

Table 11. Mann Whitney U Test for Length and Width. 

Test ID 

1 

Measurement Type 

Length 

Null Hypothesis 

The distribution pattern of ground-based and 
orthophoto-based measurement is the same. 

p-Value 

0.9699 

2 Width 
The distribution pattern of ground-based and 
orthophoto-based measurement is the same. 

0.7052 
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For both length and width, the p-value is 0.9699 and 0.7052, respectively. This proves that the null 
hypothesis was accepted, which indicates there is no significant difference in the distribution 
pattern at a 5% significance level. 

All the aforementioned test results revealed that there is no evidence showing that the ground-
based length and width measurements and orthophoto-based length and width measurements are 
statically different at a 5% significance level. Visual examination of the plotted data also supports 
this finding. Ultimately, these results collectively prove that the imagery acquired by S-UAS and 
the developed analysis tool can be effectively used to characterize cracks on the wearing surface 
of a bridge, and the accuracy is comparable to that of ground-based manual measurement. 

It should be noted that further investigation revealed that orthophoto-based measurements 
generally have lower values than ground-based manual measurement. For example, for length 
measurement, orthophoto-based method has nine measurements have lower values than ground-
based measurement. While for width measurement, orthophoto-based method has ten 
measurements have lower values than ground-based measurement. This discrepancy could be from 
either method because measurements made by inspector in the field involve random errors and 
equipment errors that cannot be avoided. On the other hand, the orthophoto created in the SfM 
technique could also produce errors that cannot be avoided. 

5.4.2. Delamination Validation 
For subsurface delamination evaluation, the delamination area was digitized based on the thermal-
infrared image and then it was compared with the tool detected area (Figure 40). As it shown in 
Figure 40, the location of the delamination area is very close, indicating that the thermal-infrared 
imagery and the develop analysis tool can be effectively used to characterize the subsurface 
delamination issues. Unfortunately, the project team cannot conduct any formal statistical test 
because the spatial resolution of the Flir C5 camera acquired image is unknown. The project team 
cannot find the camera sensor size and other specifications, which are needed for spatial resolution 
calculation. Additionally, at the time of conducting this research, the project team did not identify 
an operationally suitable S-AUS for thermal-infrared aerial imagery collection to conduct bridge 
deck subsurface delamination evaluation. However, in the long term, along with the technology 
progresses, an S-UAS for delamination evaluation could potentially be available with a low cost. 

Figure 40. The detected delamination area: (a) tool detected delamination area; (b) manual detected delamination area. 
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6. CONCLUSIONS 

Bridges are critical transportation infrastructure assets because they provide passage over physical 
obstacles to substantially reduce travel time and travel cost. Similar to other types of transportation 
infrastructure, bridges deteriorate over time. Therefore, bridges should be consistently monitored 
and routinely inspected to ensure their serviceability, capacity, and safety under current traffic. In 
the United States, routine and in-depth bridge inspections are conducted by transportation 
infrastructure management agencies at all levels (e.g., federal, state, local, and tribal) to detect the 
signs of deterioration, identify the causes, and make decisions on the distribution of limited 
resources for maintenance, repair, rehabilitation, and construction projects. 

Traditional bridge deck inspection is conducted on the ground by having inspectors either visually 
inspect surface conditions or interpret the acoustic feedback from hammer sounding or chain 
dragging method to determine subsurface conditions. These traditional methods are expensive, 
time-consuming, labor-intensive, unsafe, and requiring specialized staff on a regular basis. They 
can also exhibit a high degree of variability. 

To overcome these aforementioned challenges, the project team explored the utility of S-UAS 
based airborne imaging techniques in bridge deck surface and subsurface condition evaluation. 
The research team tested various S-UAS and selected DJI Mavic Pro 2 as the most effective one 
for collecting hyper-spatial resolution aerial images. The research team also tested various thermal-
infrared cameras and selected Flir C5 for collecting thermal-infrared images. The research team 
also compared and selected Agisoft Metashape as the software application to conduct SfM for the 
production of co-registered hyper-spatial resolution orthophoto and DSM. In addition, the research 
team utilized image enhancement techniques, image fusions techniques, image difference 
techniques, PCA, and OBIA to analyze the derived orthophotos and DSMs to detect and evaluate 
bridge deck surface (i.e., cracking) and subsurface (i.e., delamination) distresses. 

This research also developed a robust and powerful toolset that be used in standard GIS for 
operational implementation. This toolset can be used to detect and map bridge deck surface and 
subsurface distresses with an adequate degree of accuracy while maximizing the ability to assist 
inspectors with varying expertise. Research results revealed that there is no evidence showing that 
the ground-based length and width measurements and the orthophoto-based length and width 
measurements are statically different at a 5% significance level. Statistical analysis results prove 
that the imagery acquired by S-UAS and the developed analysis tool can be effectively used to 
characterize cracks on the wearing surface of a bridge, and the accuracy is comparable to that of 
ground-based manual measurement. In addition, the analysis tool detected location of the 
delamination area is very close to that of manually detected, indicating that the thermal-infrared 
imagery and the develop analysis tool can be effectively used to characterize the subsurface 
delamination issues. However, the project team cannot conduct any formal statistical analysis for 
delamination detection because the spatial resolution of the collected thermal-infrared imagery is 
unknown, which could a future research topic. 

An additional benefit of the proposed bridge deck surface and subsurface distress inspection 
system is that the aerial photography also provides a visual record of the study area. Aerial photos 
can provide a synoptic view of the bridge being inspected; permitting the documentation the bridge 
at the time the photos were taken. Unlike textual documents, aerial photos can document scenes 
and events without topical selection and human interpretation. 
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This research also developed a guidebook on using the developed tools for professional education 
and training. The ultimate goal of this research is to train a new generation of transportation 
engineers that can effectively use the developed S-UAS based data collection and analysis system 
to accurately and rapidly detect, extract, and map bridge deck surface and surface distresses at a 
low cost. 
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APPENDIX A: S-UAS BASED AIRBORNE IMAGING AND ANALYSIS 
SYSTEM GUIDEBOOK 

This guidebook has been developed to assist transportation management agencies with 
professional training and education and workforce development. This guidebook provides detailed 
instructions on how to use the identified small-unmanned aircraft system (S-UAS), real time 
kinematics (RTK) system, and developed ArcGIS compatible analysis tools to detect the distresses 
of the wearing surface of a bridge deck and the distresses of the subsurface of a bridge deck. 

Part A. S-UAS Operation 

1. The selected S-UAS is DJI Mavic 2 Pro. Detailed specifications regarding this S-UAS can be 
found at https://www.dji.com/mavic-2/info. 

2. The Quick Start Guide of the selected S-UAS (DJI Mavic 2 Pro) can be found at 
https://dl.djicdn.com/downloads/Mavic_2/20180823/Mavic_2_Pro_Quick_Start_Guide_EN.pdf. 

3. Prior to heading out into the field, make sure the controller and all batteries are fully charged. 
Depending on the size of the study site, various amounts of batteries are needed. In general, four 
batteries are recommended, which can provide a total flight duration of two hours. This setup can 
cover almost any bridges across the State of New Mexico. Press the power button on the controller 
once to make sure it is fully charged. Similarly, press the power button once on the batteries to 
ensure they are fully charged. In addition, make sure the Micro SD card has been inserted. It is 
also suggested to obtain two sets of S-UAS as a backup. Additionally, the data collection crew 
should develop a checklist to ensure all equipment and accessories are ready for data collection. 

4. In the field, make sure there is on obstacles for flight. Additionally, make sure the weather is 
preferable for flight, and the wind speed is less than 15 miles per hour. In the field, insert one 
battery into DJI Mavic 2 Pro’s battery bay and slide the battery forward until it clicks into place. 

5. Hold on the power button until you see the controller startup screen to power on the controller. 
You should feel a vibration from the controller to indicate the power is on. 

6. Turn on the DJI by holding the battery power button. When DJI Mavic 2 Pro powers on, the 
battery displays and LED animation and you hear the startup tone. 

7. Connect your smartphone or tablet to the controller via a USB cable provided by DJI. This will 
connect your smartphone or tablet to DJI Mavic 2 Pro. You can check the connection via the DJI 
Go mobile app or the Map Pilot mobile app. 

8. Upload the flight plan onto DJI Mavic 2 Pro. Detailed information about how to design and 
upload a flight plan onto DJI Mavic 2 Pro will be provided in the next section. At the completion 
of flight plan uploading, your smartphone or tablet should pop up a message to indicate plan has 
been completely uploaded to DJI Mavic 2 Pro (100%). 

9. Click on the Start button next to Upload button to start the designed mission. DJI Mavic 2 Pro 
should automatically take off and flying to the data collection area. 

10. Once the mission is completed, turn off DJI Mavic 2 Pro by pressing the battery power button 
and turn off the controller by pressing the power button. 

11. Copy the collected images to a laptop for imagery backup. 
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Part B. S-UAS Flight Plan 

The selected mobile app for DJI Mavic 2 Pro flight design and upload is Map Pilot by Drones 
Made Easy. It costs $9.99 to purchase a license. There are other options for S-UAS flight plan 
design and upload, such as 3DSurvey Pilot or DroneDeploy. They are free mobile apps but they 
may have operation limitations. 

1. The Quick Start guide of Map Pilot can be found at https://support.dronesmadeeasy.com/hc/en-
us/articles/206019863-Quick-Start-A-Start-to-Finish-Guide. 

2. Download and install Map Pilot onto your smartphone or tablet. It should be noted that this 
mobile app only works with iOS. 

3. Start Map Pilot by taping it on your smartphone and tablet. 

4. Tap on Create New Mission. 

Figure A1. The main user interface of Map Pilot. 

5. The following window should show up. Tap on OK. 

Figure A2. The user interface after taping Create New Mission. 
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6. Browse the base map to the area of interest (AOI). It should be noted that if you are designing 
the flight plan in the field, make sure you have cellular connection to download the base maps. If 
you are designed the flight plan in your office, make sure you have either cellular or Wi-Fi 
connection to download the base maps. 

7. Click the first three corners of your AOI and then drag the last corner point of your AOI to create 
a rectangular bounding box. Subsequently, double click at any location to create another point as 
your take-off and landing point. As it shows in the following screen capture, the purple solid point 
indicates the take-off and landing point, the green solid dot indicates the start point of data 
collection, and the red solid dot indicates the end point of data collection. 

Figure A3. The user interface for designing flight plans. 

8. Decide what forward overlap and sidelap for data collection and assigning the overlap by 
clicking the black strip on the top the user interface. It is suggested using 80% for forward overlap 
and 75% for sidelap. 

Figure A4. The user interface of changing overlap settings. 
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9. Tap on the magnifier button under the trash can button to change the flight altitude. It is 
suggested to collect sub-centimeter spatial resolution aerial images. For example, the study used 
0.5 cm as the resolution, which has a flight altitude of 23 m. 

Figure A5. The user interface of changing altitude settings. 

10. Tap on the pentagon button above the trash can button to see flight statistics include duration, 
batteries, images, points, and storage. 

Figure A6. The user interface of displaying flight statistics. 
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11. Connect DJI Mavic 2 Pro to the app. Users only need to power on the drone and the controller. 
The app will automatically connect to the drone. 

12. Once connected, tap on the aircraft icon on the right-hand side of the app. 

Figure A7. The user interface prior to uploading a flight plan. 

13. Once the slide bar appears, tap on the Upload button to upload the flight plan, and then tap on 
Start to start data collection. If an emergency occurs during flight, tap on Home or Stop button to 
adjourn data collection. 

Figure A8. The user interface of uploading a flight plan. 
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Part C. RTK System Operation 

The Emlid Reach RS2 system was selected as the RTK system for ground control points (GCPs) 
data collection. The complete system costs approximately $4,000. The software for post-
processing is EZSurv by developed by Effigis. The software package costs approximately $1,600. 

1. Make sure all batteries are fully charged before field trips. 

2. First setup can be found at https://docs.emlid.com/reachrs2/common/quickstart/first-setup/. 

3. Base and Rover setup can be found at https://docs.emlid.com/reachrs2/common/quickstart/base-
rover-setup/. 

4. It should be noted that users need to user their smartphone or tablet as the data collection 
controller. It should also be noted that users need to measure the distance from the benchmark to 
the base antenna, and they need to measure the distance from the spike of survey pole to the rover 
antenna as well. 

5. The ReachView mobile app will be used as the data collection controller software. It is free and 
users can download them from Apple Store or Google Play. The instruction on how to use this 
mobile app can be found at https://docs.emlid.com/reachrs2/common/reachview/. 

6. In the field, users need to place the base first. The detailed process for base setup in the field 
can be found at https://docs.emlid.com/reachrs2/common/tutorials/placing-the-base/. 

7. In the field, users need to collect GCPs in RTK mode. The detailed process for RTK mode setup 
and data collection can be found at https://docs.emlid.com/reachrs2/common/tutorials/placing-
gcps/. 

8. When data collection is completed, users need to transfer the data to a desktop computer. 

9. Start the EZSurv software and follow the steps to post process the GCPs. Processing steps can 
be found at http://www.onpoz.com/Support/KBData/KbDisplayPage.aspx. 

Figure A9. The user interface of the EZSurv software. 
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Part D. Structure from Motion Operation 

The selected software for Structure from Motion (SfM) is Agisoft Metashape. This software 
packages costs approximately $3,499. The education license costs approximately $549. 

1. The complete tutorial for the beginner level for Agisoft Metashape can be found by clicking this 
link https://www.agisoft.com/support/tutorials/beginner-level/. 

2. Add Photos, browser to the folder that contains all aerial phots. 

Figure A10. The user interface of adding photos. 

3. Align Photos, parameter values see the figure below. 

Figure A11. The user interface of aligning photos. 
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4. Build mesh from sparse point cloud, parameter values see the figure below. 

Figure A12. The user interface of building mesh. 

5. Place markers for ground control points. Place makers on photos that contain most of the 
markers. Point names will be point 1, point 2, point 3, and to the last point. 

Figure A13. The user interface of placing markers. 
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6. Change reference settings. Camera coordinate systems and marker coordinate systems. 
Parameter values see the figure below. 

Figure A14. The user interface of changing reference settings. 

7. Import reference from the post-processed GCP survey file. 

Figure A15. The user interface of importing CSV. 
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8. Uncheck all photos and check on the markers to be used in optimization. 

Figure A16. The user interface of unlocking all photos and checking on the makers. 

9. Optimize camera alignment. 

Figure A17. The user interface of optimizing camera alignment. 
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10. Optimized results check. 

Figure A18. The user interface of optimized results. 

11. Build dense point cloud. 

Figure A19. The user interface of building dense point cloud. 
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12. Build mesh from dense point cloud. 

Figure A20. The user interface of building mesh from dense point cloud. 

13. Build texture. 

Figure A21. The user interface of building texture. 
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14. Build DEM 

Figure A22. The user interface of building DEM. 
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15. Build Orthomosaic 

Figure A23. The user interface of building orthomosaic. 
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16. Export DEM 

Figure A24. The user interface of exporting DEM. 
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17. Export Orthomosaic 

Figure A25. The user interface of exporting orthomosaic. 
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Part D. Analysis Tool Operation 

The analysis toolset was developed in the Python programming language. It is compatible with 
ArcGIS ArcMap software and users with intermediate level GIS skills should be able to use it 
without any issues. 

1. Download the toolset from this link. https://github.com/edac/BridgeInspectionToolbox. 

Figure A26. The user interface of the GitHub page. 

2. Click on the “Code” button. The following dialog will pop up. 

Figure A27. The user interface of the downloading process. 

3. Click on Download ZIP. The download will start in a few seconds. 
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4. Users can find the toolset is compressed in a zip file once the download completed. 

5. Unzip the downloaded toolset. 

6. Open ArcMap 10.3.1 or newer version. 

7. The ArcMap user interface looks like below. 

8. In the Standard Toolbar, click on the ArcToolbox button below (the icon with the red box). 

Figure A28. The standard toolbar of ArcMap. 

9. The ArcToolbox dialog will open. 

Figure A29. The ArcToolbox dialog. 
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10. Right-click on any blank space in the ArcToolbox, and then the Add Toolbox button will show 
up. 

Figure A30. The user interface of Adding Toolbox. 

11. Click on the Add Toolbox button. 

12. Browse to the folder where the bridge toolset was saved. 

13. Select the Bridge toolbox and then click on Open. The toolset will be added to the ArcToolbox. 

Figure A31. The inserted Bridge Inspection Toolbox. 
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14. Click on the plus sign next the Bridge Toolbox. The two tools associated with this toolset will 
show up. 

Figure A32. The two tools in the Bridge Inspection Toolbox. 

15. Double-click on the Cracking Detection tool. The user interface looks as the following. 

Figure A33. The user interface of the Cracking Detection Tool. 
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16. Double-click on the Delamination Detection tool. The user interface looks as the following. 

Figure A34. The user interface of the Delamination Detection Tool. 

17. Users can click on the Hide Help to hide the tool instruction on the right column of the tools. 
Users can also click on the Show Help to display the tool instruction again. 

18. For the Cracking Detection tool. Users can determine the input orthophoto and DSM and then 
the output location for the cracking enhancement image and cracking highlight image. 

19. For the Delamination Detection tool. More parameters are involved. Users need to select the 
input thermal-infrared image and the output location of the detected delamination image. 
Additionally, users need to determine the following parameter values. 

(1) Spectral Detail: during the image segmentation process, this sets the level importance given 
to the spectral differences of features in the imagery. A default value is set to 20 but valid values 
range from 1.0 to 20.0. A higher value is appropriate when the features are spectrally similar. 
Smaller values create smoother outputs. If the output does not identify enough features, then raise 
the value. If it identifies too many features then lower the value. 

(2) Spatial Detail: during the image segmentation process, this sets the level importance given to 
the spatial differences of features in the imagery. A default value is set to 20 but valid values range 
from 1.0 to 20.0. A higher value is appropriate when the features are spatially similar. Smaller 
values create smoother outputs. If the output does not identify enough features, then raise the value. 
If it identifies too many features then lower the value. 

(3) Min Segment Size: the minimum size of the raster object that will be output from the image 
segmentation process. Area is measured in no units but the pixel itself. The default value is set to 
100. 
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APPENDIX B: ANALYSIS TOOLSET CODES 

import arcpy 

from arcpy.sa import * 

import os 

arcpy.ClearWorkspaceCache_management() 

arcpy.env.overwriteOutput = True 

class Toolbox(object): 

def __init__(self): 

"""Bridge Inspection Toolbox.""" 

self.label = "Bridge Inspection Toolbox" 

self.alias = "Bridge Inspection Toolbox" 

# List of tool classes associated with this toolbox 

self.tools = [CrackHeightEnhancement,DelaminationDetectionTool] 

class CrackHeightEnhancement(object): 

def __init__(self): 

"""Enhances Crack Height""" 

self.label = "Cracking Detection Tool" 

self.description = "This tool can be used to detect cracks on the wearing surface of a bridge 
deck." 

self.canRunInBackground = False 

def getParameterInfo(self): 

"""Define parameter definitions""" 

dsm = arcpy.Parameter( 

displayName="DSM", 

name="DSM", 

datatype="DEFile", 
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parameterType="Required", 

direction="Input") 

orthophoto = arcpy.Parameter( 

displayName="Orthophoto", 

name="Orthophoto", 

datatype="DEFile", 

parameterType="Required", 

direction="Input") 

output_folder = arcpy.Parameter( 

displayName="Output Folder", 

name="Output Folder", 

datatype="DEFolder", 

parameterType="Required", 

direction="Input") 

parameters=[dsm,orthophoto,output_folder] 

return parameters 

def isLicensed(self): 

"""Set whether tool is licensed to execute.""" 

return True 

def updateParameters(self, parameters): 

"""Modify the values and properties of parameters before internal 

validation is performed. This method is called whenever a parameter 

has been changed.""" 

return 
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def updateMessages(self, parameters): 

"""Modify the messages created by internal validation for each tool 

parameter. This method is called after internal validation.""" 

return 

def execute(self, parameters, messages): 

"""The source code of the tool.""" 

arcpy.AddMessage("Creating Hillshades") 

dsm=parameters[0].valueAsText 

orthophoto=parameters[1].valueAsText 

output_folder=parameters[2].valueAsText 

azimuth=45 

hillshade_list=[] 

while azimuth<=360: 

outRaster=os.path.join(output_folder,"hillshade"+str(azimuth)+'.img') 

arcpy.AddMessage("Creating Hillshade for azimuth:"+str(azimuth)) 

hillshade_list.append(outRaster) 

arcpy.HillShade_3d(dsm, outRaster, azimuth, 45, False, 4) 

azimuth=azimuth+45 

arcpy.AddMessage("Creating Hillshade Average") 

hillshade_average = (Raster(hillshade_list[0]) + Raster(hillshade_list[1])+ 
Raster(hillshade_list[2])+ Raster(hillshade_list[3])+ Raster(hillshade_list[4])+ 
Raster(hillshade_list[5])+ Raster(hillshade_list[6])+ Raster(hillshade_list[7])) / 8 

#Orthophoto Albedo 
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arcpy.AddMessage("Creating Orthophoto Average") 

orthophoto_average = CellStatistics(orthophoto, "MEAN", "DATA") 

#final 

arcpy.AddMessage("Creating Hillshade-Orthophoto Average") 

outFinal=(orthophoto_average+hillshade_average)/2 

enhanced_crack=os.path.join(output_folder,"enhanced_crack.img") 

outFinal.save(enhanced_crack) 

arcpy.AddMessage("Creating 5X5 Statistics") 

max5x5_out=FocalStatistics(dsm,NbrRectangle(5,5,'CELL'),'MAXIMUM',True) 

diff_mm=(max5x5_out-Raster(dsm))*1000 

arcpy.AddMessage("Creating diff_mm_cracks.img") 

outSetNull = SetNull(diff_mm,diff_mm, "VALUE >16") 

diff_mm_cracks=os.path.join(output_folder,"diff_mm_cracks.img") 

outSetNull.save(diff_mm_cracks) 

arcpy.AddMessage("Cleaning up Hillshade Files.") 

for hs_file in hillshade_list: 

arcpy.Delete_management(hs_file) 

return 

class DelaminationDetectionTool(object): 

def __init__(self): 

"""Define the tool (tool name is the name of the class).""" 

self.label = "Delamination Detection Tool" 

self.description = "This tool can be used to detect delamination on the subsurface of a bridge 
deck." 

self.canRunInBackground = False 
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def getParameterInfo(self): 

"""Define parameter definitions""" 

tir_image = arcpy.Parameter( 

displayName="TIR Image", 

name="TIR Image", 

datatype="DEFile", 

parameterType="Required", 

direction="Input") 

output_folder = arcpy.Parameter( 

displayName="Output Folder", 

name="Output Folder", 

datatype="DEFolder", 

parameterType="Required", 

direction="Input") 

spectral_detail = arcpy.Parameter( 

displayName="Spectral Detail", 

name="spectral_detail", 

datatype="GPDouble", 

parameterType="Optional", 

direction="Input", ) 

spectral_detail.value =20 

spatial_detail = arcpy.Parameter( 

displayName="Spatial Detail", 

name="spatial_detail", 

datatype="GPLong", 

parameterType="Optional", 
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direction="Input", ) 

spatial_detail.value = 20 

min_segment_size = arcpy.Parameter( 

displayName="Min Segment Size", 

name="min_segment_size", 

datatype="GPLong", 

parameterType="Optional", 

direction="Input", ) 

min_segment_size.value = 100 

parameters=[tir_image,output_folder,spectral_detail,spatial_detail,min_segment_size] 

return parameters 

def isLicensed(self): 

"""Set whether tool is licensed to execute.""" 

return True 

def updateParameters(self, parameters): 

"""Modify the values and properties of parameters before internal 

validation is performed. This method is called whenever a parameter 

has been changed.""" 

return 

def updateMessages(self, parameters): 

"""Modify the messages created by internal validation for each tool 

parameter. This method is called after internal validation.""" 

return 
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def execute(self, parameters, messages): 

"""The source code of the tool.""" 

tir_image=parameters[0].valueAsText 

output_folder=parameters[1].valueAsText 

spectral_detail=parameters[2].valueAsText 

spatial_detail=parameters[3].valueAsText 

min_segment_size=parameters[4].valueAsText 

Component_2='Component_2' 

arcpy.AddMessage("Running Pricipal Components on Thermal Image.") 

outPrincipalComp = PrincipalComponents(tir_image, 3) 

arcpy.AddMessage("Building Raster Layer for Component 2") 

arcpy.MakeRasterLayer_management(outPrincipalComp, Component_2, "", "", "2") 

arcpy.AddMessage("Running Segment Mean Shift on Component 2 Layer") 

seg_raster = SegmentMeanShift(Component_2, spectral_detail, spatial_detail, 
min_segment_size,"") 

arcpy.AddMessage("Setting any Value Greater Than 125 to 1 and All Others to 0") 

segments_con=Con(seg_raster,1,0,"Value>125") 

arcpy.AddMessage("Setting all 0 Values to Null") 

delamination_raster = SetNull(segments_con, segments_con, "VALUE = 0") 

arcpy.AddMessage("Crating Polygon of all true (1) values:") 

delamination_polygon=os.path.join(output_folder,'Delamination_Polygon.shp') 

arcpy.RasterToPolygon_conversion(delamination_raster, delamination_polygon, 
"SIMPLIFY","VALUE") 

return 
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